BackStandard Datasets

Clothing Segmentation and Fabrics Classification Dataset

Advanced datasets and Generative AI are revolutionizing the fashion and e-commerce industries, providing customized experiences and immersive interactions for shoppers worldwide.Our datasets provide valuable insights into fashion trends, styles, and consumer preferences, enabling businesses to deliver personalized shopping experiences.

The "Clothing Segmentation and Fabrics Classification Dataset" merges the complexity of clothing segmentation with the specificity of fabric classification, offering a dual-purpose dataset for the fashion industry. It includes internet-collected images from a variety of sources such as e-commerce websites, fashion shows, social media, and offline user-generated content. The dataset is structured to support the development of AI models that can perform both detailed segmentation of clothing items and classify them into 11 common fabric categories, encompassing 80 distinct clothing types. This dual approach aims to enhance online shopping experiences by providing detailed insights into the type of clothing and fabric, facilitating better inventory management and personalized shopping recommendations.

Sample

04-2-scaled.jpg
04-1.png
004.png
004.jpg

Specification

Dataset ID
MD-Fashion-4
Dataset Name
Clothing Segmentation and Fabrics Classification Dataset
Data Type
data-typeImage
Volume
About 200k
Data Collection
Internet collected images covers typical scenarios such as e-commerce, fashion shows, social media and offline user-generated content, etc.
Annotation
Segmentation,Classification
Annotation Notes
Regional segmentation of 11 common fabric categories including 80 clothing types.
Application Scenarios
Smart Retail;O2O;Sns;E-Commerce;Fashion & Apparel;Visual Entertainment

Quality Assurance

Quality Assurance

Relevant Open Datasets

To supplement our Face Parsing Dataset, users can explore these open datasets for additional resources:

Fashionpedia [Learn more]

This dataset includes 48,825 clothing images annotated with segmentation masks and fine-grained attributes, built upon an expertly crafted ontology that encompasses 27 main apparel categories and 19 apparel parts. It's designed to advance tasks combining both detection and attributes classification in the fashion domain.

DeepFashion2 [Learn more]

A comprehensive fashion dataset containing 491K images of 13 popular clothing categories from both commercial and consumer sources. Each item is meticulously labeled with attributes such as scale, occlusion, viewpoint, category, and style, making it a versatile benchmark for clothing image understanding.

DeepFashion [Learn more]

This dataset boasts around 800K diverse fashion images with rich annotations, including 46 categories, 1,000 descriptive attributes, bounding boxes, and landmark information. The variety ranges from well-posed product images to consumer photos, providing a broad spectrum for fashion image analysis.

Related products

Any further information, please contact us.

contact us